1st-Year SHINE Project Report: Evaluation of Coronal & Heliospheric Models Installed at CCMC

Lan K. Jian¹, C.T. Russell¹, P.J. MacNeice², R. Evans², A. Szabo², J.G. Luhmann³, D. Odstrcil^{2,4}, C.N. Arge⁵, I. Sokolov⁶, P. Riley⁷

¹UCLA, ²GSFC, NASA, ³UCB, ⁴GMU, ⁵AFRL, ⁶UMich, ⁷PSI

Supported by NSF SHINE Award AGS-1062105.

Acknowledgements to CCMC staff especially A. Chulaki,

A. Mendoza, A. Taktakishvili. Thanks to the model providers.

6th CCMC Workshop Key Largo, Florida January 18, 2012

Introduction

- ❖ Photospheric magnetograph synoptic map: 1° resolution
- ❖ Wang-Sheeley-Arge (WSA) model: 2.5° resolution (0.94 Rs)
- Enlil model
 - To 10 AU, the grid is $1024 \times 45 \times 180$, *i.e.*, $1.66 \text{ Rs} \times 2^{\circ} \times 2^{\circ}$
 - To 2 AU, the grid is $1024 \times 120 \times 360$, *i.e.*, 0.42 Rs × $1^{\circ} \times 1^{\circ}$
 - 27 days for 360°, 1° for 0.075 day = 1.8 hours (3.75 Rs)
 - New version uses the variable field from the synoptic maps and coronal models, so it has better IMF tracing
- Space Weather Modeling Framework (SWMF)
 - 1-16 Rs: the smallest cell is 0.023 Rs
 - 16-400 Rs: the smallest cell is 0.39 Rs, and increases to 6.25 Rs at the boundaries
 - Most of the Ulysses trajectory: a resolution of 3.125 Rs

Part I. Spacecraft (ACE & Ulysses) Observations vs. Enlil Model Results for Carrington Rotations (CRs) 2016-2018 (May-July 2004)

Jian, L.K., C.T. Russell, J.G. Luhmann, P.J. MacNeice, D. Odstrcil, P. Riley, J.A. Linker, R.M. Skoug, J.T. Steinberg, *Solar Phys.*, *273*, 179-203, 2011.

Why CRs 2016-2018?

- Ulysses made 3 aphelion passes at 5.4 AU in its lifetime: Feb 1992, Apr 1998, and June 2004
- In the 1st aphelion pass, the coverage of 1-AU solar wind observations was poor
- In the 2nd aphelion pass (rising phase), no well-defined recurring stream interaction regions (SIRs) or CIRs occurred at 1 and 5.4 AU
- In the 3rd aphelion pass, ACE and Ulysses encountered two CIRs each CR from 2016 to 2018

Coronal Sources: CR 2017 as An Example

MWO: Mount Wilson Observatory

NSO: National Solar Observatory at Kitt Peak

Inner Boundary of Enlil Model at 0.144 AU (31 Rs)

- The latitudinal span of slow-wind belt is wider from NSO than MWO, by ~10°
- The NSO-MAS-Enlil run produces more V and T discrepancies and a less P discrepancy for slow and fast wind regions than the other two runs, likely in part due to an ad hoc speed correction at 30 Rs

Inner Boundary of Enlil Model at 0.144 AU (cont.)

- The NSO-WSA-Enlil run looks like an intermediate solution between the other two runs
- Using the same models, the NSO-WSA-Enlil run produces more structured slow wind than the MWO-WSA-Enlil run, probably because NSO has more sensitive instruments and better corrections to the polar field for this CR than MWO
- Using the same synoptic magnetograph, the NSO-WSA-Enlil run shows more structure than the NSO-MAS-Enlil run, probably because MAS coronal model uses a simple adiabatic energy equation and a single polytropic index (Riley, Linker, and Mikić, 2001).

Comparison of Spacecraft Observations and Enlil Model Results

Comparison of CIR Features

- The Enlil model can generally reproduce the field polarities and sector boundaries, and roughly capture the occurrence and features of SIRs
- The new version of models have improved the prediction of timing, Vmax, Npmax
- The performance of different models can change the order from 1 to 5.4 AU

Comparison of CIR Features (cont.)

- All the models underestimate the maxima of Tp, B, and Pt
- The free parameters of the new version have not been pre-calibrated on as many CRs as the old version; the setting of the new scaling factor for B is not mature
- The MWO-WSA-Enlil and NSO-MAS-Enlil models cannot capture the transient and small SIRs at 1 AU

Comparison of Baseline Slow Solar Wind

1 AU 5.4 AU

1 AU 5 4 AU

1 AU 5.4 AU

1 AU 54 AU

Part II.

Multi-Spacecraft Observations within 2 AU vs. Model Results for CRs 2056-2062 (May-Oct. 2007)

In progress

Synoptic Coronal Hole Plot from NSO/GONG

Spacecraft Location for CRs 2056-2062

IMF Polarity

MESSENGER over CRs 2056-2060

Venus Express over CRs 2056-2062

IMF Strength

MESSENGER over CRs 2056-2060

Venus Express over CRs 2056-2062

Solar Wind Speed

Venus Express over CRs 2056-2062

Observation

NSO-WSA-Enlil

GONG-WSA-Enlil

1

GONG-SWMF

Too slow!

Ulysses

Observation

NSO-WSA-Enlil

GONG-WSA-Enlil

1

GONG-SWMF

Too slow!

Solar Wind Density

Venus Express over CRs 2056-2062

Near Earth

Observation

NSO-WSA-Enlil

GONG-WSA-Enlil

GONG-SWMF
(Np of slow wind > Np observed)

Observation

NSO-WSA-Enlil

GONG-WSA-Enlil

GONG-SWMF

Solar Wind Temperature

Venus Express over CRs 2056-2062

Observation

NSO-WSA-Enlil

GONG-WSA-Enlil

1

GONG-SWMF (slow wind Tp is high)

Discussion and Conclusions

- Timing is a big issue for space weather forecasting
- The Enlil model v2.7 provides a **better prediction of CIR timing** and fast wind speed than v2.6. It uses a higher scaling factor for real time IMF predication, and the factor varies with observatory
- ➤ All the models **underestimate B and Tp**, except the SWMF model for slow-wind temperature.
- Different sources of synoptic maps cause significant difference in modeling results, so as different models using same synoptic maps
- Among the NSO-WSA-Enlil, GONG-WSA-Enlil, & GONG-SWMF models
 - The GONG-WSA-Enlil model gives better IMF polarity, V, Np, and Tp prediction than the other two
 - The SWMF model gives <u>slower and denser solar wind in</u> <u>general</u>, and its slow wind is hotter than observation. It can get stronger B compression

Future Work

- 1. Obtain the results at more locations from SWMF model
- 2. Run more CRs of SWMF model for parallel comparison
- 3. Add the new version of CORHEL model into the comparison
- 4. Evaluate the additional solar wind heating needed in the models
- 5. Run more CRs and more observatories for all the models to gain better statistics
- Evaluate the capability of capturing small-scale solar wind structures
- 7. Access the continuity of successive CRs
- 8. Examine synoptic maps vs. daily updated maps